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Abstract 
There is an increasing interest in policies that promote invention and diffusion in solar energy 
technologies. In this paper the question of how does support policies affect inventions and 
diffusion of solar PV technology and is the effect heterogeneous and counteracting is 
investigated. The policies investigated are Feed-in-tariffs, Public R&D stock and flow, 
Environmental tax, and Environmental Policy Stringency Index. A Schumpeterian 
technological development approach is utilized on a panel dataset covering 23 European 
countries between 2000 and 2019. Two econometric approaches are employed, a negative 
binomial regression model is used to assess inventions and a panel data fixed effect regression 
is used for the diffusion model. The empirical findings suggest that FITs, Public R&D stock 
and flow, Environmental tax and Environmental Policy Stringency Index have no statistically 
significant negative effect on either inventions or diffusion. In most cases for invention the 
policies had a statistically significant positive effect. Policy crowding out does not seem to have 
been present. 
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1. Introduction 
There is an increasing interest in policies that promote invention and diffusion in solar energy 

technologies (Peters et al., 2012; Johnstone et al., 2012; Rubin et al., 2015; Elshurafa et al., 

2018). Global photovoltaic solar capacity (hereinafter PV) has increased from 1.25 GW in 2000 

to 23 GW in 2009 and 704 GW in 2020. The PV price, in terms of levelized cost of electricity 

has declined from around 80 USD (in 2013 USD) per KWh in 1976 to average 0.38 USD per 

KWh in 2019 (IRENA, 2020). A multitude of policies promotes solar inventions and diffusion 

contributing to a rapid development (Popp, 2002; Johnstone, 2010; Hosenuzzaman, et al., 2015; 

Jimenez et al., 2016; Ding et al., 2020).  

However, while there are numerous studies that evaluate policy induced innovation and 

diffusion separately – how the same policy affects both have not been considered. Not 

evaluating a policy on several dimensions is unfortunate since there is a risk that a policy can 

promote one aspect of technological progress such as invention but derail diffusion. Different 

support policies can have heterogeneous effects in different technologies (Popp, 2002; 

Brunnermeier and Cohen, 2003; Palage et al., 2019). The same policy can also affect different 

renewable energies differently (Pitelis et al., 2020).  

For instance, feed-in-tariffs (FITs) combined with an underestimation of cost reductions led to 

an uninhibited PV market boom in Spain in 2008 and in France in 2010 (del Río and Mir-

Artigues, 2012; de La Tour et al., 2013). The boom ensued a sharp policy alteration where a 

payment cap for installations and a cut in the FITs lead to a bust since a generous deployment 

policy can incentivize higher cost production and technology lock-in (Böhringer et al., 2017; 

Kim and Tang, 2020). A policy at the wrong moment can impede a successful development and 

thus can prompt bankruptcies and job losses, therefore the question of how different policies 

reinforce or counteract each other is a concern in policy analysis (Strambo et al., 2015). 

The purpose of this paper is to establish if policies (Feed-in-tariffs, Public solar RD&D stock 

and flow, Environmental tax, and Environmental Policy Stringency Index) have a simultaneous 

effect on invention and diffusion in solar PV and if these effects are counteracting. The 

contribution to the research literature is twofold. First, the research extends the understanding 

of how policies affect invention and diffusion simultaneously i.e., our understanding of possible 

unintended policy effects is enhanced. Second, time and country dimension for solar pv 

development are somewhat extended which is important considering fast development of solar 

energy. The following research question is investigated:  
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• How does support policies affect inventions and diffusion of solar PV technology and 

is the effect heterogeneous and counteracting?  

The empirical strategy is based on a framework from Grafström and Lindman (2017) derived 

from the Schumpeterian view on invention, innovation, and diffusion (Schumpeter, 1934; 

1942). The theoretical foundation concerning technological change is based on the induced 

innovation concept (Hicks, 1932; Acemoglu, 2002). According to the induced innovation 

concept policies can induce both desired and undesired outcomes (Guidolin and Mortarion, 

2010; Evans, 2016). The evolutionary economics literature is also considered where 

technological change is a complex, non-linear, and highly iterative process (Foray, 2009). 

A panel data set covering 23 European countries between 2000 and 2019 is utilized.1 Two 

econometric methods are used – a knowledge production function and a diffusion model 

(Ruttan, 1959; Kline and Rosenberg, 1986; Jaffe and Stavins, 1995). The econometric results 

are used to consider whether a policy had negative or positive effects on invention and diffusion 

of solar PV technology, point estimates will not be commented on.2 The policy choices were 

limited by data availability and country coverage. For example, there is not good, and relevant, 

price data from many smaller countries with few installations especially two decades ago when 

the solar technology was immature. 

Why would any negative effects be expected? An example would be if firms are incentivised 

to reduce invention efforts (slightly) to focus more on diffusion due to a policy program that 

under a limited time make significant tax breaks for installations. As seen in previous studies, 

energy policy affects inventive, innovative and diffusion activity on renewable energy 

technologies (Popp, 2002; De Vries and Withagen, 2005; Johnstone et al., 2010a; Johnstone et 

al., 2012; Johnstone et al., 2010b; Rao and Kishore, 2010; Tang, 2018; Lin and Chen, 2019). 

A caveat is that cross-country policy compression creates challenges on several levels. Firstly, 

a policy with the same name can be constructed vastly different and have amendments attached 

to it beyond the fiscal paid out, e.g., demands that the recipient should act in a certain way or 

that a package of policies is meant to support each other. Secondly, we have tried to assemble 

policies that was in effect or implemented in most countries, this excluded some policies. The 

policies tested in this paper are to a large extent aggregate that should represent a policy 

 
1 Due to data availability issues the invention model have data up until 2016 while the diffusion model has it to year 2019, the 
issue is elaborated upon in Section 4. Austria, Belgium, Czech Republic, Denmark, Estonia, Finland, France, Germany, Greece, 
Hungary, Ireland, Italy, Latvia, Lithuania, Netherlands, Poland, Portugal, Slovak Republic, Spain, Sweden, United Kingdom. 
2 Since the policies are expected to differ in construction among the countries point estimates are not of value, but the direction 
of the effect is interesting.  
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direction. If just a few countries were studied as in some previous research, then more specific 

policies can be studied but here a more overarching European approach is chosen. 

The paper is organized as follows. Section 2 presents literature regarding support policies for 

solar PV and invention and diffusion. Section 3 introduces the method and model specifications 

and econometric issues; Section 4 describe the data, definitions, and sources while Section 5 

presents the empirical results Section 6 synthesizes and discusses the empirical results. Section 

7 presents some concluding remarks. 

2. Previous literature 

2.1 Policy for PV 

Governmental energy policies are meant to influence energy industry development into a 

certain trajectory for example, sustained capacity growth, new categories of energy generation, 

delivery, and consumption (Guidolin and Mortarion, 2010). Energy policies may involve 

legislation, investment promotion, or international agreements (Solangi et al., 2011). Policy can 

also mitigate uncertainty. Renewable energy initially had a significant cost disadvantage against 

fossil fuel. Few firms can finance decades of uncertainty and it has taken decades to develop 

cost competitive renewable energy. 

A non-trivial part of many European countries’ current energy policies is related to the 

development of renewable energy technologies. The policies can be in the form of FITs, quotas 

with Tradable green certificates (TGCs), bidding/ tendering schemes, low-interest loans, 

investment subsidies, net metering, and fiscal incentives. Both support policies and energy 

prices can influence inventive, innovative and diffusion activity on renewable energy 

technologies (Popp, 2002; De Vries and Withagen, 2005; Johnstone et al., 2010a; Johnstone et 

al., 2010b; Johnstone et al., 2012; Rao and Kishore, 2010; Tang, 2018; Lin and Chen, 2019).  

The growth in the PV industry since 2004 has largely been driven by government support in 

the European and Asian countries (Jacobs et al., 2013; Wang et al., 2016; Xiong and Yang, 

2016). The invention creating impact of various policies depends on technology maturity as 

showed by Johnstone et al. (2010b). A policies’ effect on technological change depends on its 

stringency, predictability, and implementation. Longer policy engagement has a positive effect 

on innovation (Hille et al., 2020). Aldieri et al. (2020) further showed that renewable energy 

implementation costs depend on potential market size, geographical distances, labour cost 

differences, and institutional factors. Below follows a longer description of policies: 
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• FITs is longstanding an incentive program for renewable technologies (Solangiet al., 

2011; Böhringer et al., 2017). The price can be set administratively or through market-

based mechanism such as an auction. When a firm construct a renewable energy 

installation, they can receive a long-term contract which provides access to the 

electricity grid at an elevated guaranteed price (del Rio and Mir-Artigues, 2012). 

Johnstone et al. (2010) and Nicolli and Vona (2016) found that FITs was positive for 

solar PV innovation. Outside of Europe, FITs have been legislated in Australia, Canada, 

and in parts of the United States, as well as in many developing nations. According to 

Dong et al. (2021) the PV construction in China would virtually disappear without FITs. 

FITs have sometimes been costly because of exponential PV growth which generated a 

corresponding growth in costs (del Río and Mir-Artigues, 2012; de La Tour et al., 2013). 

Demand-pull policies, such as FITs, promote different learning processes, and can 

nurture innovation (Palage et al., 2019). 

• R&D supports consist of a variety of grants, loans, and subsidies to help remedy 

technological spillovers and encourage future cost reductions. Public R&D can 

compensate for a firm's underinvestment caused by uncertainty and market failures 

(Söderholm and Klaassen, 2007; Goulder and Parry, 2008; Aschhoff and Sofka, 2009). 

Renewable energy technologies can be augmented by Public R&D expenditure on other 

technologies by knowledge spillovers (Cohen and Levinthal, 1989; Costantini and 

Crespi, 2008; Antonelli and Quatraro, 2010). Nemet and Baker (2009) found that cost 

reduction targets for solar PV could not be reached by subsidies alone and that R&D 

support was needed. Miremadi et al. (2019) found that R&D spending on renewable 

sources helped increase knowledge spillovers between the Nordic countries. Zhao et al. 

(2021) found that R&D support is a driver of renewable energy innovation. 

• In the context of energy policy, taxes are intended to remedy negative externalities such 

as emissions and is a theoretically simple solution for correcting market imperfections 

(Menanteau et al., 2003; Zhao, 2010). Several tax policies exist where some European 

countries have energy taxes with renewable energy exemptions which allows renewable 

energy producers to exempt their production from tax payments (Freire-González and 

Puig-Ventosa, 2019). Property tax exemptions allow businesses and homeowners to 

exclude the added value of a solar system from the valuation of their property for 

taxation purposes. The Scandinavian countries and the Netherlands have used CO2 taxes 

since 1990, and province in different Canadian and US states have enacted their own 

taxes. The recent rapid deployment of PV in the United States has been attributed in 
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significant part to a federal Investment Tax Credit which allows consumers to deduct 

26 percent of the cost of installing a solar energy system from their federal taxes 

(Comello and Reichelstein, 2016).  

• There are policies that directly promote renewable energy production which uses market-

based incentives and quantity-based mandates to increase the share of electricity from 

renewable sources (Kim and Tang, 2020). Renewable portfolio standards (RPS) 

mandate firms to have a certain percentage of their total electricity production or 

delivery comes from renewable energy (Lauber, 2004). An alternative for the firms is 

to purchase renewable energy certificates. A downside found with RPS is that they can 

reduce trade performance in a country by inducing extra cost on its industries and 

encourage imports rather than own development by domestic firms where trade is free 

(Rickerson et al., 2007).  

• Production and investment subsidies are intended to promote deployment of new 

installations. A commonplace practice is to pay for subsidies to renewables by taxing 

conventional electricity suppliers (Avril et al., 2012). Other investment support systems 

are loans for home installation of a PV system (Rai and Sigrin, 2013). Net metering 

systems have been introduced for small-scale renewable energy systems (Darghouth et 

al., 2011). 

• The European Union Emissions Trading System (EU ETS) is currently the world’s largest 

greenhouse gas emission trading program, governing emissions across 30 European 

nations covering emissions from more than 11,000 heavy energy-using installations 

(power stations & industrial plants) and airlines operating between these countries 

amounting to around 45 percent of the EU's greenhouse gas emissions (European 

Environmental Agency, 2019). 

Over the past three decades, a literature around policy-induced inventions and innovation has 

emerged. The literature has assessed a “weak” version of the so-called “Porter hypothesis” 

which suggest that stringent environmental policies can spur innovation and lead to the growth 

of green technologies (Porter and van der Linde, 1995; Böhringer et al., 2017). Some policies 

create demand or expand markets, with positive side effects such as learning-by-doing and cost-

competitiveness against other technologies where a market expansion increase returns to R&D 

investment for firms (Popp, 2006). The role of endogenous technological change and innovation 

have also been prominent in economic literature on environmental policy (Gillingham et al. 

2008; Bergek and Berggren 2014).  
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2.2 Invention and diffusion 

Policy can induce technological change in several ways and enable provision of both basic and 

applied knowledge. Policy intended to increase diffusion of a technology (e.g., construction 

subsidies) can stimulate a variety of learning by “moving down” the technologies’ learning 

curves (Sagar and Zwaan, 2006). Popp (2019) highlight the value of public policy to promote 

technological development and adoption based on the “public good” nature of knowledge that 

creates positive externalities for the public and the innovator.  

Invention and innovation are sometimes used synonymously while diffusion is treated 

independently. Schumpeter had a compelling argument regarding concept separation: 

“Innovation is possible without anything we should identify as invention, and invention does 

not necessarily induce innovation, but produces of itself ... no economically relevant effect at 

all” (Schumpeter, 1939, p. 81). Literature that concerns the development of new patents as 

invention research even when the authors call it innovations have bene considered. We follow 

the definition made by Rosenberg (1990) and Grant (2002) who defines Invention as: “The 

creation of new products and processes through the development of the new knowledge or from 

new combinations of existing knowledge. Most inventions are the result of novel applications 

of existing knowledge,” (Grant, 2002, p. 333).  

In the PV sector, Peters et al. (2012) found evidence of public policy-related invention. 

Johnstone et al. (2012) studied the determining factors of environmentally related patents and 

observed that both environmental policy stringency and general inventive capacity promoted 

environment related innovation. Kruse and Wetzel (2016) used PV patent data from the 

European Patent Office and a panel of 26 OECD countries over the period 1978–2009, they 

found that the existing knowledge stock was a significant driver of invention. 

Johnstone et al. (2010a) studied patent propensity in several green energy fields and found that 

FITs induced innovation in solar power analyzing a patent panel data covering 25 countries 

over the period 1978–2003. They found that public policy significantly affects patent 

applications. Braun et al. (2010) studied solar and wind power technology for 21 OECD 

countries between 1978 and 2004 found that public R&D stimulates patent production. Lin and 

Chen (2019) studied China on a provincial level from 2006 to 2016 and found that invention 

was driven by R&D expenditures and in the long run electricity prices. Popp et al. (2011) used 

patent data to assess the role that technological advancement played in investment in renewable 

energy. Tradable green certificates induce more innovation in close to competitive 
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technologies, whereas technology-specific policies induced innovation in technologies further 

away from grid-parity, such as PV (Chowdhury et al., 2014). 

Diffusion occurs after invention and innovation through adoption by firms or individuals (Grant, 

2002). Policy and prices affect the diffusion rate (Hansen et al., 2015). The diffusion of solar 

PV is a process by which an invention is transmitted over time among PV industry members 

(Raso and Kishore, 2010). A technologies’ diffusion rate is dependent on context specific 

factors such as institutions, technologies, and socio-economic situation (Aldieri et al., 2020).  

Bollinger and Gillingham (2012) studied the owner-occupied homes diffusion of PV panels in 

California and found that an additional installation increases the probability of an adoption in 

the zip code by 0.78 percentage points. Similar peer-effects were found by Cho et al., (2019). 

Sovacool and Ratan (2012) reviewed adoption of residential solar panels in Germany and 

United States from investors’ perspective and found that political commitment, favourable legal 

and regulatory frameworks, competitive prices, community, and individual ownership was 

facilitators for solar power adoption. Palm (2016) found that factors such as Peer effects 

(individuals influencing each other to adopt PV) and local organizations promoting PV were 

identified as explanatory factors for the high local PV diffusion rates. Mirzania et al., (2020) 

studied South Africa and the United States respectively and found that the main success factors 

for diffusion was consistent policy support, which bridged the gap between research and 

development and market diffusion. In South Africa, the main barriers were technical and 

economic problems, including a lack of technological expertise, resources, and funding.  

Popp et al. (2011) found that technological advancement (measured as patents) leads to a greater 

investment in renewable energy. New technologies are often pricier than established 

technologies hence cost decrease for the newer technology is possible. A price decrease can 

increase market shares and outcompete technologies with less cost reduction opportunity. Cost 

reduction can originate in learning-by-doing and an energy policy that incentives inventions or 

innovations can also speed up technology diffusion (Söderholm and Sundqvist, 2007; Fischer 

and Newell, 2008). Kavlak et al., (2018) studied learning and development for solar PV and 

found that government and private R&D was the most important driver of development in the 

1990s whereas after 2001 scale economies drove cost reductions. 
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3. Method: An invention and diffusion model of PV 

3.1 Invention model specifications 

Consistent with prior research on inventions, annual patent counts were used to proxy 

inventions (Popp, 2002; Johnstone et al., 2010a). A knowledge production function framework 

developed by Griliches was utilized (1979; 1992). The invention estimation approach used is 

common in previous studies (Klaassen et al., 2005; Aldieri and Cincera, 2009; Boschma and 

Iammarino, 2009; Corradini et al., 2014). The empirical approach is laid out with baseline 

equation (1): 

 
𝑃𝑃𝐶𝐶𝑛𝑛𝑛𝑛 = 𝛽𝛽0 + 𝛽𝛽1𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝑐𝑐𝐶𝐶𝑐𝑐𝐶𝐶𝑐𝑐𝐶𝐶𝐶𝐶𝑐𝑐 𝑛𝑛𝑛𝑛−2 + 𝛽𝛽2𝐻𝐻𝐶𝐶𝐶𝐶𝐶𝐶𝐻𝐻 𝐶𝐶𝐶𝐶𝑐𝑐𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑛𝑛𝑛𝑛−2  +

𝛽𝛽3𝑊𝑊𝐶𝐶𝑊𝑊𝐶𝐶 𝑟𝑟𝐶𝐶𝐶𝐶𝐶𝐶𝑛𝑛𝑛𝑛−2 + 𝛽𝛽4𝑃𝑃𝑃𝑃𝐶𝐶𝑐𝑐𝑃𝑃𝐶𝐶𝐶𝐶𝐶𝐶𝑐𝑐𝑃𝑃𝐻𝐻 𝑃𝑃𝑟𝑟𝐶𝐶𝑐𝑐𝐶𝐶 𝑛𝑛𝑛𝑛−2 + 𝛽𝛽5𝑃𝑃𝑃𝑃𝐶𝐶𝐶𝐶𝑐𝑐𝑐𝑐𝑛𝑛𝑛𝑛−2 + 𝑇𝑇𝑛𝑛 + 𝛼𝛼𝑛𝑛 + 𝜀𝜀𝑛𝑛𝑛𝑛, 
(1)  

The dependent variable, 𝑃𝑃𝐶𝐶𝑛𝑛𝑛𝑛, is PV patents approved in country n (n = 1, …, N) for year t (t = 

1, …, T). Control variables normally observed in the literature is added such as polysilicon 

price, cumulative capacity, and researcher ratio in labour force; these control variables are 

lagged two years. The lag is utilized because public R&D spending at time t may render a patent 

application in period t + x (x = 2) (Nicolli et al., 2012). Country-specific fixed effects, α𝑛𝑛, 

captures any unobservable country-specific heterogeneity. The error term captures the residual 

variation, 𝜀𝜀𝐻𝐻𝐶𝐶. 

Model I introduced in equation (1) is the base which four other model specifications (II-IV) 

expands from. The period 2000 to 2016 is tested for the specifications (see Table 1). 

Table 1 Invention specifications 

Model Estimated model specification Description 

I 𝑃𝑃𝐶𝐶𝑛𝑛𝑛𝑛 = 𝛽𝛽0 + 𝛽𝛽1𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝑐𝑐𝐶𝐶𝑐𝑐𝐶𝐶𝑐𝑐𝐶𝐶𝐶𝐶𝑐𝑐 𝑛𝑛𝑛𝑛−2 + 𝛽𝛽2𝑐𝑐𝑃𝑃𝐻𝐻𝐶𝐶𝑟𝑟𝑃𝑃𝐶𝐶𝐶𝐶 𝐶𝐶𝐶𝐶𝑟𝑟𝐶𝐶𝐶𝐶𝑣𝑣𝐶𝐶𝐶𝐶𝑃𝑃𝑛𝑛𝑛𝑛−2 + 𝛽𝛽3𝐹𝐹𝐹𝐹𝑇𝑇𝑛𝑛𝑛𝑛 + 𝑇𝑇𝑛𝑛
+ 𝛼𝛼𝑛𝑛 + 𝜀𝜀𝑛𝑛𝑛𝑛  

Base model with FIT 2000-
2016. 

II 𝐶𝐶𝑛𝑛𝑛𝑛 = 𝛽𝛽0 + 𝛽𝛽1𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝑐𝑐𝐶𝐶𝑐𝑐𝐶𝐶𝑐𝑐𝐶𝐶𝐶𝐶𝑐𝑐 𝑛𝑛𝑛𝑛−2 + 𝛽𝛽2𝑐𝑐𝑃𝑃𝐻𝐻𝐶𝐶𝑟𝑟𝑃𝑃𝐶𝐶𝐶𝐶 𝐶𝐶𝐶𝐶𝑟𝑟𝐶𝐶𝐶𝐶𝑣𝑣𝐶𝐶𝐶𝐶𝑃𝑃𝑛𝑛𝑛𝑛−2 + 𝛽𝛽3𝑅𝑅&𝐷𝐷 𝑓𝑓𝐶𝐶𝑃𝑃𝑓𝑓𝑛𝑛𝑛𝑛
+ 𝑇𝑇𝑛𝑛 + 𝛼𝛼𝑛𝑛 + 𝜀𝜀𝑛𝑛𝑛𝑛 

R&D flow 2000-2016.  

III 𝐶𝐶𝑛𝑛𝑛𝑛 = 𝛽𝛽0 + 𝛽𝛽1𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝑐𝑐𝐶𝐶𝑐𝑐𝐶𝐶𝑐𝑐𝐶𝐶𝐶𝐶𝑐𝑐 𝑛𝑛𝑛𝑛−2 + 𝛽𝛽2𝑐𝑐𝑃𝑃𝐻𝐻𝐶𝐶𝑟𝑟𝑃𝑃𝐶𝐶𝐶𝐶 𝐶𝐶𝐶𝐶𝑟𝑟𝐶𝐶𝐶𝐶𝑣𝑣𝐶𝐶𝐶𝐶𝑃𝑃𝑛𝑛𝑛𝑛−2 + 𝛽𝛽3𝑅𝑅&𝐷𝐷 𝑃𝑃𝐶𝐶𝑃𝑃𝑐𝑐𝑠𝑠𝑛𝑛𝑛𝑛
+ 𝑇𝑇𝑛𝑛 + 𝛼𝛼𝑛𝑛 + 𝜀𝜀𝑛𝑛𝑛𝑛 

R&D Stock 2000-2016. 

IV 𝐶𝐶𝑛𝑛𝑛𝑛 = 𝛽𝛽0 + 𝛽𝛽1𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝑐𝑐𝐶𝐶𝑐𝑐𝐶𝐶𝑐𝑐𝐶𝐶𝐶𝐶𝑐𝑐 𝑛𝑛𝑛𝑛−2 + 𝛽𝛽2𝑐𝑐𝑃𝑃𝐻𝐻𝐶𝐶𝑟𝑟𝑃𝑃𝐶𝐶𝐶𝐶 𝐶𝐶𝐶𝐶𝑟𝑟𝐶𝐶𝐶𝐶𝑣𝑣𝐶𝐶𝐶𝐶𝑃𝑃𝑛𝑛𝑛𝑛−2+ 𝛽𝛽3𝐸𝐸𝐻𝐻𝐶𝐶 𝑇𝑇𝐶𝐶𝑇𝑇𝑛𝑛𝑛𝑛
+ 𝑇𝑇𝑛𝑛 + 𝛼𝛼𝑛𝑛 + 𝜀𝜀𝑛𝑛𝑛𝑛 

Environmental Tax 2000-
2016.  

V 𝐶𝐶𝑛𝑛𝑛𝑛 = 𝛽𝛽0 + 𝛽𝛽1𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝑐𝑐𝐶𝐶𝑐𝑐𝐶𝐶𝑐𝑐𝐶𝐶𝐶𝐶𝑐𝑐 𝑛𝑛𝑛𝑛−2 + 𝛽𝛽2𝑐𝑐𝑃𝑃𝐻𝐻𝐶𝐶𝑟𝑟𝑃𝑃𝐶𝐶𝐶𝐶 𝐶𝐶𝐶𝐶𝑟𝑟𝐶𝐶𝐶𝐶𝑣𝑣𝐶𝐶𝐶𝐶𝑃𝑃𝑛𝑛𝑛𝑛−2 + 𝛽𝛽3𝐸𝐸𝑃𝑃𝐸𝐸𝑛𝑛𝑛𝑛 + 𝑇𝑇𝑛𝑛
+ 𝛼𝛼𝑛𝑛 + 𝜀𝜀𝑛𝑛𝑛𝑛 

Policy Environmental 
Policy Stringency Index 
2000-2016.  
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3.2 The diffusion model specification 

Basic technology diffusion models, which were later extended, assumed that the adoption of an 

invention or innovation depend on market size and the rate of increase, expressed in the 

following equation: 

 𝑑𝑑𝑑𝑑
𝑑𝑑𝐶𝐶

= 𝑣𝑣𝑑𝑑(𝐶𝐶)(𝑑𝑑𝑢𝑢 − 𝑑𝑑(𝐶𝐶)) (2)  

Where N(t) is the cumulative adoption at time t and Nu is the upper limit to growth, b is the 

coefficient of diffusion. Söderholm and Klassen’s (2007) amended version of the theoretical 

rational choice model used by Jaffe and Stavins (1995) is employed which assumes that the PV 

owner maximizes the present value of PV production net benefits. The projected total benefits 

of a median PV installation in country n during period t, TBnt, can be expressed as:  

 
𝑇𝑇𝐵𝐵𝑛𝑛𝑛𝑛 = 𝛼𝛼0(𝐶𝐶𝐶𝐶𝑛𝑛𝑛𝑛)𝛼𝛼1 �� 𝑃𝑃𝑛𝑛𝑛𝑛𝐹𝐹 𝐶𝐶−𝑟𝑟𝑛𝑛𝑑𝑑𝐶𝐶

𝑇𝑇

𝑛𝑛=0
�
𝛼𝛼2

�� 𝑃𝑃𝑛𝑛𝑛𝑛𝐺𝐺 𝐶𝐶−𝑟𝑟𝑛𝑛𝑑𝑑𝐶𝐶
𝑇𝑇

𝑛𝑛=0
�
𝛼𝛼3

 
(3)  

Where CCnt is total installed PV capacity in country n (n = 1, …, N) for year t (t = 1, …, T). In 

the baseline equation 𝑃𝑃𝑛𝑛𝑛𝑛𝐹𝐹  is a policy (like Feed-in-Tarrifs) in year t, and 𝑃𝑃𝑛𝑛𝑛𝑛𝐺𝐺  is a control variable 

(like human capital level or input prices). Capacity in MW is utilized; hence a fixed load factor 

is implicitly assumed over the PV installations lifetime. Where the (simplified) total cost for a 

given level of PV capacity is: 

 𝑇𝑇𝐶𝐶𝑛𝑛𝑛𝑛 = 𝛽𝛽0(𝐶𝐶𝐶𝐶𝑛𝑛𝑛𝑛)𝛽𝛽1(𝐶𝐶𝑛𝑛𝑛𝑛)𝛽𝛽2(𝐻𝐻𝐶𝐶𝐶𝐶𝐶𝐶𝐻𝐻 𝐶𝐶𝐶𝐶𝑐𝑐𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑛𝑛𝑛𝑛)𝛽𝛽3 (4)  

were Cnt represents a cost measure of installing PV capacity. A PV owner maximizes profit of 

PV production where the marginal benefits equal marginal costs. By differentiating equations 

(3) and (4) with respect to CCnt, the subsequent first-order condition for profit maximization is 

obtained: 

 𝛼𝛼0 ∗ 𝛼𝛼1(𝐶𝐶𝐶𝐶𝑛𝑛𝑛𝑛)𝛼𝛼1−1(𝑃𝑃𝑛𝑛𝑛𝑛𝐹𝐹 )𝛼𝛼2(𝑃𝑃𝑛𝑛𝑛𝑛𝐺𝐺 )𝛼𝛼3

= 𝛽𝛽0 ∗ 𝛽𝛽1(𝐶𝐶𝐶𝐶𝑛𝑛𝑛𝑛)𝛽𝛽1−1(𝐶𝐶𝑛𝑛𝑛𝑛)𝛽𝛽2(𝐻𝐻𝐶𝐶𝐶𝐶𝐶𝐶𝐻𝐻 𝑐𝑐𝐶𝐶𝑐𝑐𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑛𝑛𝑛𝑛)𝛽𝛽3  

(5)  

After rearranging, the logarithmic form of equation (5) can be written as: 

 
𝐶𝐶𝐻𝐻 𝐶𝐶 𝐶𝐶𝑛𝑛𝑛𝑛 = 𝜆𝜆 +

𝛼𝛼2
(𝛽𝛽1 − 𝛼𝛼1)

𝐶𝐶𝐻𝐻 𝑃𝑃𝑛𝑛𝑛𝑛𝐹𝐹 +
𝛼𝛼3

(𝛽𝛽1 − 𝛼𝛼1)
𝐶𝐶𝐻𝐻 𝑃𝑃𝑛𝑛𝑛𝑛𝐺𝐺 −

𝛽𝛽2
𝛽𝛽1 − 𝛼𝛼1

𝐶𝐶𝐻𝐻 𝐶𝐶𝑛𝑛𝑛𝑛

−
𝛽𝛽3

(𝛽𝛽1 − 𝛼𝛼1)
 

(6)  

where 

 𝜆𝜆 =
(𝐶𝐶𝐻𝐻 𝛼𝛼0 + 𝐶𝐶𝐻𝐻 𝛼𝛼1 − 𝐶𝐶𝐻𝐻 𝛽𝛽0 − 𝐶𝐶𝐻𝐻 𝛽𝛽1

(𝛽𝛽1 − 𝛼𝛼1)
 (7)  
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Equation (8) is the baseline PV diffusion equation tested:  

 
𝐶𝐶𝐻𝐻 𝐶𝐶 𝐶𝐶𝑛𝑛𝑛𝑛 = 𝐶𝐶0 + 𝐶𝐶1 𝐶𝐶𝐻𝐻 𝐻𝐻𝐶𝐶𝐶𝐶𝐶𝐶𝐻𝐻 𝑐𝑐𝐶𝐶𝑐𝑐𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑛𝑛𝑛𝑛𝐹𝐹 + 𝐶𝐶2 𝐶𝐶𝐻𝐻 𝑃𝑃𝑃𝑃𝐶𝐶𝐶𝐶𝑐𝑐𝑐𝑐𝑛𝑛𝑛𝑛𝐺𝐺 + 𝐶𝐶3 𝐶𝐶𝐻𝐻 𝐶𝐶𝑛𝑛𝑛𝑛

+ 𝐶𝐶4 𝐶𝐶𝐻𝐻 𝑅𝑅&𝐷𝐷𝑛𝑛𝑛𝑛  
(8)  

The specifications of the diffusion models are presented in Table 2. In model VI, PV diffusion 

is explained by several cost related control variables. The disturbance terms represent any 

unobserved influences on solar power diffusions. 

Table 2 Diffusion specifications 

Model Estimated diffusion equation Comments 

VI 𝐶𝐶𝐻𝐻 𝐶𝐶 𝐶𝐶𝑑𝑑𝑛𝑛𝑛𝑛 = 𝛽𝛽0 + 𝛽𝛽1 𝐶𝐶𝐻𝐻 𝐶𝐶𝑛𝑛𝑛𝑛 + 𝛽𝛽2 𝐶𝐶𝐻𝐻 𝐹𝐹𝐹𝐹𝑇𝑇𝑛𝑛𝑛𝑛𝐺𝐺 + 𝛽𝛽3−𝑛𝑛 𝐶𝐶𝐻𝐻 𝐶𝐶𝑃𝑃𝐻𝐻𝐶𝐶𝑟𝑟𝑃𝑃𝐶𝐶 𝐶𝐶𝐶𝐶𝑟𝑟𝐶𝐶𝐶𝐶𝑣𝑣𝐶𝐶𝐶𝐶𝑃𝑃𝑛𝑛𝑛𝑛𝐹𝐹  + 𝜙𝜙𝑛𝑛𝑛𝑛  Feed-in-tariff 

VII 𝐶𝐶𝐻𝐻 𝐶𝐶 𝐶𝐶𝑑𝑑𝑛𝑛𝑛𝑛 = 𝛽𝛽0 + 𝛽𝛽1 𝐶𝐶𝐻𝐻 𝐶𝐶𝑛𝑛𝑛𝑛 + 𝛽𝛽2 𝐶𝐶𝐻𝐻 𝑅𝑅&𝐷𝐷 𝑓𝑓𝐶𝐶𝑃𝑃𝑓𝑓𝑛𝑛𝑛𝑛𝐺𝐺 + 𝛽𝛽3−𝑛𝑛 𝐶𝐶𝐻𝐻 𝐶𝐶𝑃𝑃𝐻𝐻𝐶𝐶𝑟𝑟𝑃𝑃𝐶𝐶 𝐶𝐶𝐶𝐶𝑟𝑟𝐶𝐶𝐶𝐶𝑣𝑣𝐶𝐶𝐶𝐶𝑃𝑃𝑛𝑛𝑛𝑛𝐹𝐹 + 𝛼𝛼𝑛𝑛𝑛𝑛 R&D flow 

VIII 𝐶𝐶𝐻𝐻 𝐶𝐶 𝐶𝐶𝑑𝑑𝑛𝑛𝑛𝑛 = 𝛽𝛽0 + 𝛽𝛽1 𝐶𝐶𝐻𝐻 𝐶𝐶𝑛𝑛𝑛𝑛 + 𝛽𝛽2 𝐶𝐶𝐻𝐻 𝐸𝐸𝑃𝑃𝐶𝐶𝐶𝐶𝑟𝑟 𝑅𝑅&𝐷𝐷 𝑃𝑃𝐶𝐶𝑃𝑃𝑐𝑐𝑠𝑠𝑛𝑛𝑛𝑛𝐺𝐺 + 𝛽𝛽3−𝑛𝑛 𝐶𝐶𝐻𝐻 𝐶𝐶𝑃𝑃𝐻𝐻𝐶𝐶𝑟𝑟𝑃𝑃𝐶𝐶 𝐶𝐶𝐶𝐶𝑟𝑟𝐶𝐶𝐶𝐶𝑣𝑣𝐶𝐶𝐶𝐶𝑃𝑃𝑛𝑛𝑛𝑛𝐹𝐹

+ µ𝑛𝑛𝑛𝑛 
R&D Stock 

IX 𝐶𝐶𝐻𝐻 𝐶𝐶 𝐶𝐶𝑑𝑑𝑛𝑛𝑛𝑛 = 𝛽𝛽0 + 𝛽𝛽1 𝐶𝐶𝐻𝐻 𝐶𝐶𝑛𝑛𝑛𝑛 + 𝛽𝛽2 𝐶𝐶𝐻𝐻 𝐸𝐸𝐻𝐻𝐶𝐶 𝑇𝑇𝐶𝐶𝑇𝑇𝑛𝑛𝑛𝑛𝐺𝐺 + 𝛽𝛽3−𝑛𝑛 𝐶𝐶𝐻𝐻 𝐶𝐶𝑃𝑃𝐻𝐻𝐶𝐶𝑟𝑟𝑃𝑃𝐶𝐶 𝐶𝐶𝐶𝐶𝑟𝑟𝐶𝐶𝐶𝐶𝑣𝑣𝐶𝐶𝐶𝐶𝑃𝑃𝑛𝑛𝑛𝑛𝐹𝐹 + 𝜊𝜊𝑛𝑛𝑛𝑛 Environmental tax 
 

X 𝐶𝐶𝐻𝐻 𝐶𝐶 𝐶𝐶𝑑𝑑𝑛𝑛𝑛𝑛 = 𝛽𝛽0 + 𝛽𝛽1 𝐶𝐶𝐻𝐻 𝐶𝐶𝑛𝑛𝑛𝑛 + 𝛽𝛽2 𝐶𝐶𝐻𝐻 𝐸𝐸𝑃𝑃𝐸𝐸𝑛𝑛𝑛𝑛𝐺𝐺 + 𝛽𝛽3−𝑛𝑛 𝐶𝐶𝐻𝐻 𝐶𝐶𝑃𝑃𝐻𝐻𝐶𝐶𝑟𝑟𝑃𝑃𝐶𝐶 𝐶𝐶𝐶𝐶𝑟𝑟𝐶𝐶𝐶𝐶𝑣𝑣𝐶𝐶𝐶𝐶𝑃𝑃𝑛𝑛𝑛𝑛𝐹𝐹 + 𝜔𝜔𝑛𝑛𝑛𝑛 
 

Environmental Policy 
Stringency 
 

 

3.3 Econometric issues 

Patent data is binomial, and the dependent variable is count data (Baltagi, 2008; Greene, 2012). 

Either a negative binomial or Poisson estimators is appropriate for a count data regression 

(Hausman et al., 1984). The Poisson model has issues, the key issue is equi-dispersion, i.e., the 

variance is equal to the mean. Equi-dispersion is a problem, and models handling over-

dispersion is preferred when the variance is larger than the mean. Negative binomial models 

can accommodate over-dispersion (Blundell et al., 1995). A common concern when handling 

patent data is the presence of many zero (0) (Blundell et al., 2002; Hu and Jefferson, 2009). 

Numerous zeros are either the result of no inventive activity, or failed efforts. The dependent 

variable is maintained in its original form instead of taking logs since the presence of a 

significant portion of zeros causes a drop of data when a logarithmic transformation is applied 

(Nicolli et al., 2012).  

The occurrence of other endogenous policies is present, so a lag approach and fixed effects are 

used to mitigate endogeneity issues. Endogeneity issues can arise due to both reverse causality 

and omitted variables in a multi-country study. Endogeneity is concerning, especially when 

estimating of policy-induced effects (Nesta et al., 2014; Hille et al., 2020). Following Hille et 

al. (2020), given the research question regarding the heterogeneous effect different policies 
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neither a propensity score matching, nor an instrumental variable approach was feasible or used. 

No statistically significant support for endogeneity was found by Hausman specification test 

for cumulative capacity in the invention equations. It is a possibility that other explanatory 

variables are endogenous in the invention and diffusion model specifications. The feed-in price 

and public R&D could be reduced by the government when solar PV cost falls. A point to 

consider is the additive error structure, where the error term, ent, is decomposed into two 

components so that: 

 𝐶𝐶𝑛𝑛𝑛𝑛 = 𝜆𝜆𝑛𝑛 + 𝐶𝐶𝑛𝑛𝑛𝑛 (1)  

𝜆𝜆𝑛𝑛 is a country-specific effect, while 𝐶𝐶𝑛𝑛𝑛𝑛 represent the residue stochastic disturbance term. 

Unobserved country-specific effects can exist in PV investment costs across the countries in 

the dataset related to, such as institutions and policies. Particularly institutions can be persistent 

thus country-specific effects are captured with a dummy variable for N-1 (Baltagi, 2008).  

4. Data sources, definitions, and descriptive statistics 

4.1 The Dependent Variables 

The dependent variable for the invention model is patent counts of granted PV patent 

applications based on priority year. Following an OECD approach Patent Cooperation Treaty 

patents were used (Hascic et al., 2008). In cases inventors from two different countries, each 

country obtains a count of 0.5 (Fischer et al., 2006). The geographical location for the invention 

is assigned after the formal inventor and not the formal applicant. The years covered are 2000 

to 2016 due to data availability and reporting lags. 

Bruns and Kalthaus (2020) highlighted several PV patent studies containing over 51 patent 

assembling methods, hence our considerations are the following. The patent data was derived 

from the OECD Environment Directorate who collaborate with the Directorate for Science, 

Technology, and Innovation. The OECD Environment Directorate have constructed patent-

based innovation indicators to track developments in environment-related technologies. The 

statistic originates from the Worldwide Patent Statistical Database (PATSTAT) of the European 

Patent Office (EPO), the OECD developed and used algorithms to extract the data. Patents 

granted at more than one patent jurisdiction in the world were used to exclude lower value 

patents and to alleviate the possibility of unique patents rules. 

Alternative sources for selecting patent data have become available in addition to the Green 

Inventory Classification, that is a rather old classification for example, IPC and EPO 

Y02E10/70 Cooperative Patent Classification class or the OECD ENVTECH Indicator. Since 
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the research goal is to establish if the policies had a positive or negative effect on the variable, 

we are content with the more easily accessible variant of the variable selected, while if point 

estimates on elasticities would be made then a more precise dataset should be used. 

There is an understandable criticism attached to the data source for a patent study apart from 

the usual pro-et-contra argument for patent data. There are good conceptual criticisms of patent 

data as output measure (Johnstone et al., 2017). A concern is non-patenting. (Pakes and 

Griliches, 1980). Not all inventions are patented, but not many substantial inventions are devoid 

of patenting (Johnstone et al., 2010a), but there is some degree of strategic non-patenting 

(Arundel, 2001). Another issue to consider is varying economic value of patents and 

depreciation over time (Pakes, 1985). The monetary returns of the top 10 percent capture most 

economic value (Scherer and Harhoff, 2000). 

The dependent variable, in the diffusion model is installed electricity production capacities for 

PV derived from Eurostat. The data cover net maximum electrical capacity during the period 

2000 to 2019. The variable represents existing generation capacity in a country and excluding 

decommissioned capacity. Electrical capacity for solar grew 700 times between 2000 and 2019 

(Eurostat, 2021). 

A weakness with using net maximum electrical capacity is that the output does not always 

contribute to the actual output of the system. For example, if subsidies are big enough then 

production capacity can be constructed where power output is not optimal but still give an 

economic profit. As showed in for example Grafström (2021) China had for a long-time 

incentive that encouraged firms construct wind power but not connecting the power plants to 

the electricity grid. 

4.2 Policy and independent variables 

To investigate the influence of policies on inventions and diffusion is collected and presented 

in Table 3. Five policy variables are tested. 1) Feed-in tariffs; 2,3) The stock and flow of Public 

solar R&DD spending; 4) Environmental tax and 5) Environmental Policy Stringency Index. 

Table 3 Policy variables 

Policy cluster Policy instrument Basic support mechanism 

Feed-in tariffs Fixed or premium feed-in-tariffs, Net 
metering, Public competitive bidding. 

Market-pull 

The stock and flow of Public solar 
R&DD spending 

Research, development, and 
deployment programs, in million USD 
(2014 prices). 

Technology-push 

Environmental tax Tax revenue, % of GDP. Market-pull 



14 
 

Environmental Policy Stringency Index The index covers the degree of 
stringency of 15 environmental policies. 

Market- push and pull 

 

FITs are based on prices, but policy designs can differ between countries and time. FITs are 

mostly a market-based economic instruments, which typically offer contracts of different 

lengths that guarantee a price to a producer of a pre-determined source of electricity per kWh 

fed into the electricity grid. An advantage is that the policy promotes actual energy production 

and not just installation. The data comes from the OECD who has cross-checked the data against 

other renewable energy policy databases (REN21, IEA/IRENA, OECD PINE database). The 

data is originally drawn from on government sources. The data include country-level values on 

the tariff (in USD/kWh), and length of the awarded power-purchasing agreement. Some 

countries use FITs with fixed rates, where the producers are assured a prearranged long-run 

reimbursement.  

R&D-flow and R&D-Stock variable respectively represents a flow and stock variable of 

government expenditure on PV R&D in million USD (2014 prices). General- and specific 

purpose R&D is commonly considered when analysing a country’s inventive capacity 

(Dechezleprêtre et al., 2013; Furman et al., 2002; Grafström, 2018a Grafström, 2018b; Wiser 

and Millstein, 2020; Grafström et al., 2020). The R&D data is derived from the International 

Energy Agency. There are issues to consider. The database could be incomplete and there can 

be consistency issues with respect to the geographical coverage (Arundel and Kemp, 2009; 

Bointner, 2014). Also, possible R&D spending from regional governments are not provided by 

all countries (IEA, 2012). Comprehensive R&D data from the private sector was not accessible. 

The variable Stock of public PV R&D (Knt) was built based on the perpetual inventory method 

(Ek and Söderholm, 2010): 

𝐾𝐾𝑛𝑛𝑛𝑛 = (1 − 𝛿𝛿)𝐾𝐾𝑛𝑛(𝑛𝑛−1) + 𝑅𝑅𝑛𝑛(𝑛𝑛−𝑥𝑥) (4) 

𝐾𝐾𝑛𝑛𝑛𝑛 is the knowledge stock in country n during time t. Additionally, 𝛿𝛿 is the knowledge stocks 

yearly depreciation rate (0 ≤ δ ≤ 1), 𝑅𝑅𝑛𝑛𝑛𝑛 denotes new investments, and x is the years (lag) before 

new investments join the knowledge stock (Hall and Scobie, 2006).  Following other studies 

(Griliches 1998; Corradini et al., 2014), a depreciation rate of 15 percent was applied.  

Environmental tax (Tax revenue, percent of GDP) is supposed to capture overall climate for 

environmental action. A high level of environmental taxes should signal governmental priority 

of environmental issue and affect relative prices and investment incentives (Bovenberg and De 
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Mooij, 1997; Freire-González and Puig-Ventosa, 2019). Environmental taxes play a role in 

many European countries. In 2018, total environmental tax revenue in the EU amounted to 

€324.6 billion, representing 2.4 percent of EU GDP (Eurostat, 2020). The largest contributor of 

the environmental taxes was charged on energy which accounted for 77.7 of the total revenues 

from environmental taxes in 2018, well ahead of taxes on transport (19.1 percent) and pollution 

and resources (3.3 percent). 

The Environmental Policy Stringency Index is constructed by the OECD. The index combines 

quantitative and qualitative factors related to environmental laws and regulations (Botta and 

Koźlak, 2014). The index covers the stringency of 15 environmental policies, primarily related 

to climate and air pollution. The stringency ranges from 0 (not stringent) to 6 (highest degree 

of stringency). The index is divided into two main subsets. There is a Market-based subset of 

instruments, for example, taxes on emissions, trading schemes, systems of deposit and refund 

and FITs (feed in tariffs). The Non-market subset includes for example the norms concerning 

emissions ceilings and the limit of sulphur content in diesel, and governmental subsidies for 

renewable energy. A policy index is valuable to investigate since according to the Porter 

hypothesis, stricter regulations create a scenario where firms and the environment can be 

winners (Porter and van der Linde, 1995). Firms get more competitive and innovative at the 

same time since strict regulations induce both product and process innovations which 

counteracts compliance cost. Furthermore, an index gives some advantages over using single 

policies seen in several studies who used dummy variables representing the existence of a 

policy. By paying more attention to the general effect of how instruments are designed, a better 

understanding of general policy effects is reached (Baudry and Bonnet, 2018). 

Independent variables: Following economic theory, national technological development 

depends on three factors: (1) its invention infrastructure such as R&D employees or R&D 

expenditures as well as the stock of previous innovations (Grossman and Helpman, 1991), (2) 

its knowledge base in technology (Archibugi and Coco, 2005), and (3) its common 

infrastructure and industries (Jungmittag, 2006).  

The variable total researchers per thousand total employment comes from OECD's Research 

and Development Statistics (RDS) database is based on the data reported to OECD and Eurostat 

in the framework of a co-ordinated collection. Human capital is an important input for economic 

growth (Romer, 1990). The research personnel variable captures human capital input in 

knowledge creation and country level ability to diffuse new technologies. 
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Polysilicon is an important input in a PV cell, which price has been on a downward path over 

the last decade. The input price should affect invention since a high price incentivise reduced 

product dependency. It is expected that a high input price decreases demand in the innovation 

part and incentivise cost reduction in diffusion part. Figure 1 shows the development of 

polysilicon price over the last two decades.  

 

 
Figure 1 Polysilicon average price, USD/kg. Source: BNEF Survey. 

 

Brent oil represent an alternative energy source and its price should affect implementation of 

other energy sources. The Brent price is from BP statistical review 2020.  

The labour intensity of renewable energy is perceived to be higher than in conventional energy 

(del Río and Burguillo, 2008). Since any production, whether in research or actual construction 

phase, is dependent on some amount of labour input a variable that represent the average annual 

wage in 2018 USD PPPs and 2018 constant prices is used. The data contains data on average 

annual wages per full-time and full-year equivalent employee in the total economy and is 

obtained from the OECD. A rapid-developing technology usually have bottlenecks when it 

comes to key personnel. Solar power deployment is labour intensive, especially when it comes 

to installations and hence the wage rate in a country should matter. 

The real interest rate on government bonds is utilized as proxy for the opportunity cost of 

public R&D expenses and other investments; these interest rates were compiled by the World 

Bank. Real interest rate is the lending interest rate adjusted for inflation as measured by the 

GDP deflator. A Caveat given by the World bank is that the terms and conditions attached to 

loans vary by country, which limit comparability to some extent (World bank, 2020). GDP 

(constant 2010 US$) is the gross domestic product. GDP sums the gross value added by all 
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resident producers in the economy plus any product taxes and minus any subsidies not included 

in the value of the products (OECD, 2021). The population variable is derived from the OECD. 

Table 4 presents variable statistics. 

Table 4 Data descriptives and definitions 

Variable Description Mean 
Standard 

deviation 
Minimum Maximum 

Patents granted Number (counts) of granted PV patents. 28 77 0 663 

Cumulative 
capacity 

Installed electricity production capacities for 
PV (MW). 

1433 5141 0 40679 

R&D flow 
Public expenditures on PV R&D in million 
USD (2014 prices and assuming purchasing 
power parity). 

14 25 0 127 

R&D stock 
Stock of public expenditures on PV R&D in 
million USD (2014 prices and assuming 
purchasing power parity). 

73 141 0 798 

Solar Price Weighted average total installed costs (2019 
USD/kW). 

2343 1239 766 5912 

Environmental 
Policy Stringency 
Index (ER) 

The stringency ranges from 0 (not stringent) to 
6 (highest degree of stringency). 

2.34 0.72 0.81 4.13 

FIT Feed-in tariff support level USD. 0.16 0.23 0 0.82 

Environmental tax  Tax revenue, percent of GDP. 2.64 0.68 1.56 5.1 

Human Capital Total researchers per thousand in employment. 7.2 3.14 2.28 17.27 

GDP Gross Domestic Product, Million US$ (current 
PPP$) 

719437 947459 13184 4644164 

Average annual 
wage In 2018 USD PPPs and 2018 constant prices. 37674 12218 11359 65891 

Polysilicon price Spot Polysilicon Overall Average Price 
USD/kg. 

89.77 108.02 14.6 474 

Interest rate 
Real interest rate is the lending interest rate 
adjusted for inflation as measured by the GDP 
deflator 

3.66 2.58 -0.51 22.49 

Population Persons, Thousands 20383 24141 436 83093 

5. Empirical results and discussion 
Five invention models are tested and presented in Table 5, with the baseline control variables 

and different policies that are added separately since many of these policies overlap, to some 

extent. For example, the environmental policy stringency consists of different support schemes 

such as FIT and government R&D.  

Models I-IV analyse the development of patents in the PV field, between 2000 and 2016. Model 

V studies a slightly shorter period since data for the policy stringency index was lacking after 

year 2015 and some of the countries. In the case of R&D some countries did not report their 

spending (for example, Greece and Hungary so they were dropped in those regressions). A 
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positive statistically significant result would indicate that the policy has a positive effect on 

inventions.  

Table 5 Invention Models I -V 

 Model I Model II Model III Model IV Model V 
VARIABLES FIT R&D R&D Stock Env. tax Policy index 

      
Cumulative Capacity 0.0646** 0.0687*** 0.0641*** 0.0743*** 0.00947 
 (0.0240) (0.0217) (0.0187) (0.0228) (0.0278) 
Human capital -0.420 -0.351 -0.488** -0.477 -0.546 
 (0.387) (0.250) (0.189) (0.372) (0.409) 
Average wage -0.744 -0.966* -1.142** -0.764 -0.906 
 (0.691) (0.553) (0.523) (0.622) (0.852) 
Polysilicon Price 0.259*** 0.307*** 0.306*** 0.288*** 0.283*** 
 (0.0373) (0.0361) (0.0363) (0.0415) (0.0492) 
Brent Oil 0.322** 0.299*** 0.234** 0.364*** 0.158 
 (0.132) (0.105) (0.0990) (0.120) (0.172) 
GDP 0.670 0.589 0.502 0.641 1.648* 
 (0.730) (0.573) (0.428) (0.667) (0.845) 
Population 3.251* 2.406* 0.695 3.473* 6.363*** 
 (1.771) (1.253) (0.673) (1.693) (1.718) 
Interest rate 0.00637 0.0111 0.0270 0.0120 0.0360 
 (0.0185) (0.0195) (0.0157) (0.0190) (0.0251) 
FIT 0.466**     
 (0.220)     
Public Solar R&D  0.170***    
  (0.0584)    
Public Solar R&D Stock   0.295***   

   (0.0563)   
Environmental tax    0.200  
    (0.308)  
Env. Policy Stringency     0.269*** 
     (0.0915) 
Constant -24.13 -14.19 3.775 -26.28* -56.20*** 
 (14.51) (10.98) (8.354) (14.03) (13.65) 
      
Observations 371 371 371 371 252 
Fixed Effects YES YES YES YES YES 
Year fixed effects NO NO NO NO NO 
R-squared 0.506 0.522 0.555 0.496 0.651 
Number of country1 23 23 23 23 19 

 

Statistically significant and positive results are found for all policies except for the 

environmental tax level.  

For diffusion five models are tested with the baseline control variables and different policies 

added separately due to that they often contain elements of each other, such as that policy 

stringency contains taxes and R&D spending. The results are presented in Table 6. Observe that 
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for some countries policy data was missing and those countries were dropped. The dependent 

variable is country level cumulative solar PV capacity between 2000 and 2019. Model X studies 

a slightly shorter period since data for the policy stringency index was lacking after 2015. A 

positive statistically significant result would indicate that the policy has a positive effect on 

diffusion.  

Statistically significant results were found for the FITs, but not for the other policy variables.  

Table 6 Diffusion Models VI - X 

 Model VI Model VII Model VIII Model IX Model X 
VARIABLES FIT R&D R&D Stock Env. tax Policy index 
Human capital 3.009** 3.049** 2.809** 2.894** 3.056* 
 (1.310) (1.310) (1.212) (1.196) (1.671) 
Average wage -5.831 -6.298* -6.255* -5.864* 0.934 
 (3.622) (3.324) (3.280) (3.290) (3.201) 
Polysilicon Price -0.685*** -0.535*** -0.552*** -0.580*** -0.431** 
 (0.187) (0.172) (0.175) (0.185) (0.170) 
Brent Oil 0.305 0.461 0.442 0.557 -0.763 
 (0.500) (0.501) (0.462) (0.472) (0.728) 
GDP 10.96*** 11.24*** 11.05*** 11.25*** 13.31*** 
 (2.595) (2.354) (2.381) (2.554) (2.355) 
Population -1.550 -2.727 -4.222 -2.55 12.56** 
 (7.913) (7.281) (7.256) (0.73) (5.653) 
Interest rate 0.00613 0.0496 0.0676 0.0655 0.386*** 
 (0.114) (0.123) (0.121) (0.124) (0.0976) 
FIT 2.586**     
 (1.180)     
Public Solar R&D  0.273    
  (0.308)    
Public Solar R&D Stock   0.329   
   (0.316)   
Environmental tax    -0.552  
    (1.523)  
Env. Policy Stringency     0.655 
     (0.391) 
Constant 42.75 56.03 70.01 27.36 -170.8*** 
 (88.62) (82.20) (81.14) (30.41) (51.01) 
Observations 414 414 414 414 254 
Fixed Effects YES YES YES YES YES 
R-squared 0.744 0.733 0.733 0.730 0.791 
Number of country1 23 23 23 23 19 

Robust standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1 
 

Several robustness checks were performed. Following Palage et al. (2019), the inclusion of the 

time-specific polysilicon price and Brent oil variable mean that the specifications cannot 

unequivocally control for other time-specific effects with yearly dummy variables. Lacking 

year dummy controls can be problematic because the estimated coefficients can also capture 

macroeconomic shocks correlated policies and patenting activity (Popp et al. 2011; Grafström, 

2017). To check the robustness in the estimations, dummy variables for different time periods 

are included in robustness checks where the polysilicon price and Brent oil variable are 

excluded (Appendix B and C). The econometric analysis then includes time dummies Tn, and 

therefore a concern is remedied – that the coefficients on the variables of interest capture shocks 
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correlated with both the level of R&D policies and the cumulative capacity, and innovation 

activity. Shocks could include any macroeconomic shocks and one can contemplate such 

unobserved variables that may cause the coefficients to be biased.  

The diffusion specifications were run over a shorter period, 2008-2019 (Appendix C). The 

motivation for investigating the shorter period is that after 2008 there was a significant rise in 

solar installations in the countries compared to the relative sparse diffusion in the technology’s 

relative infancy. The policy result remained significant and environmental taxes was also added 

to statistically significant policies that had a positive effect on solar diffusion. Polysilicon Price 

is statistically significant and negative. For invention a similar shorter time frame was tested 

with positive results for FIT and the R&D knowledge stock. 

6. Discussion 
Based on the findings presented in table 5 and 6, for invention and diffusion the policies 

investigated did not show negative counteracting effect on either invention or diffusion. A 

counteracting effect refers to a policy found to be statistically significant and positive for 

inventions are statistically significant and negative for diffusion (or the other way around). 

What is seen is positive effects of the policies and no negative effects. In Table 7 the results are 

summarised:  

Table 7 Policy results 

Policy Invention Diffusion 

FIT Positive significant Positive significant 

Public R&D Positive significant Not significant 

Public Solar R&D Stock Positive significant Not significant 

Environmental tax  Not significant Not significant 

Environmental Policy Stringency Positive significant Not significant 

 

The positive and significant results for FITs indicate that the policy did not negatively affect 

the invention and diffusion process. Possible reasons for the policy being positive in both cases 

is that firms are either engaged in construction of solar parks or technology development. FITs 

are popular and have been found to be perceived by investors as one of the most effective policy 

(Bürer and Wüstenhagen, 2009). A large expansion of solar power could incentivise inventors 

and firms to invent and develop new technological solutions rather than expanding production.  
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For public R&D support the year-to-year spending did not affect diffusion which is not 

unexpected since research and development is a long run effort and some of the benefits could 

be adopted almost decades after the spending was initiated. As noted by Kavlak et al., (2018) 

in the 1990s R&D was more important and after 2001 scale economies was more important. 

For invention, both the R&D flow and stock is a positive and statistically significant indicator. 

An argument for why the standard environmental policies (such as carbon taxes or permits) 

need to combine with R&D support in renewable energy technologies is that once the 

knowledge base in clean energy is large enough, firms will start innovating; rendering the need 

for public policy intervention only temporary (Acemoglu et al., 2012, Aalbers et al., 2013). In 

other words, the inventive capacity in the solar field was improved by long run knowledge 

accumulation (much in line with for example, Antonelli and Quatraro, 2010; Rennings, 2000). 

However, public R&D funding in both forms was insignificant for diffusion. One possible 

explanation is that technological change is a long run process where it takes a long accumulation 

period of knowledge before diffusion can be made. Imports from other countries that had R&D 

and production could also matter. 

For Environmental tax and Environmental Policy stringency, the results are mixed. 

Environmental taxes do not affect neither invention nor diffusion. The result is in hindsight not 

unexpected. Different degrees of environmental taxes have existed in most countries for a long 

time, sometimes more for fiscal purposes than environmental objectives. An example would be 

if an energy tax is implemented then it will have environmental effects, but the true political 

purpose could have tax revenues. Since the variable measures tax revenue as percentage of 

GDP, tax efficient at tackling environmental harm would over time revenue should revenue 

leading to an equilibrium level of optimum externality at which the agent is indifferent between 

investing to reduce externality or pay taxes. 

The Environmental policy stringency variable was statistically significant and positive for 

invention – indicating that the more emphasis a state places on environmental efforts (fiscal and 

legal) the higher output new solar technology will be in the country. Not surprisingly, a higher 

focus by public policy on mitigating and tackling climate issues will likely result in a better 

technological development for new solar energy.  

Overall, the findings can be interpreted as a “weak” version of the so-called “Porter hypothesis” 

which argues that stringent environmental policies do spur inventions (Porter and van der Linde, 

1995; Böhringer et al., 2017). The rise in cumulative PV-capacity can be explained two ways: 

first, the production costs for PV has declined sharply. Second, the expansion is the result of 
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generous subsidies and other support policy measures in many countries (Wang et al., 2016; 

Xiong and Yang, 2016). 

Based on the estimation results, policy crowding out effect are absent. It could be the case that 

politicians overall have implemented well thought true policies, at least on average. Th absents 

of policy crowding out does not exclude the possibility that during some stage policies in some 

countries could be counteracting.  

7. Concluding Remarks and Directions for Future Research 
The empirical findings suggest that FITs, Public R&D stock and flow, Environmental tax and 

Environmental Policy Stringency Index have no statistically significant negative effect on either 

inventions or diffusion. In most cases for invention the policies had a statistically significant 

positive effect. Policy crowding out does not seem to have been present. 

It was not a priori clear whether different technological development steps would be affected 

differently by the same policy. Considering the solar PV technologies immaturity relative to 

other established technologies the answers should not be interpreted generally for all 

technologies. However, the method and the framework of analysis could be applied to other 

studies also.  

The idea about crowding out policies originate in macroeconomic theories, on the other hand 

there are economic theories about that policies can create a “crowding in” effect. For example, 

post-Keynesian means that government activity could increase demand and thereby stimulate 

private expenditure as well. 

There are several ways to improve the analysis if newer data could be obtained and enough time 

have elapsed to allow for a comprehensive analysis of the development in the last two decades. 

It could be the case that the coming decade is more important given the expectation about 

technological progress. At the turn of century solar power was a fringe phenomenon which have 

started to grow but it is yet to become a large part of the energy sector. 

Outstanding questions include: How does these policies affect innovation? With sufficiently 

good installation price data, a broad investigation can be made to estimate a classic learning 

curve model where long run price change are evaluated. Future research should dedicate 

consideration to connected subjects to expand the knowledge of technological change and the 

environment. 
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Appendix A: Correlation matrix and countries 
Table A1: Correlation matrix  

 CC FIT Pat RND FIT Pindx Tax Inrest Res GDP Wage RnDS 
BNP 
cap Pop2 PP Oil 

CC 1,00                

FIT 0,09 1,00               

Pat 0,65 0,29 1,00              

RND 0,59 0,28 0,72 1,00             

FIT 0,09 1,00 0,29 0,28 1,00            

Pindx 0,24 0,35 0,30 0,32 0,35 1,00           

Tax -0,07 -0,16 -0,22 -0,15 -0,16 0,17 1,00          

Inrest -0,27 0,00 -0,25 -0,32 0,00 -0,44 0,01 1,00         

Res 0,03 -0,20 0,05 -0,06 -0,20 0,45 0,20 -0,33 1,00        

GDP 0,58 0,25 0,72 0,84 0,25 0,31 -0,27 -0,32 -0,05 1,00       

Wage 0,16 -0,01 0,26 0,35 -0,01 0,42 0,24 -0,45 0,45 0,32 1,00      

RnDS 0,76 0,31 0,75 0,91 0,31 0,39 -0,12 -0,36 -0,03 0,84 0,33 1,00     
BNP 
cap 0,30 0,10 0,31 0,36 0,10 0,62 0,12 -0,54 0,54 0,32 0,84 0,41 1,00    

Pop2 0,44 0,22 0,62 0,79 0,22 0,18 -0,31 -0,20 -0,16 0,96 0,20 0,73 0,13 1,00   

PP -0,16 0,19 -0,01 -0,08 0,19 0,09 -0,05 -0,04 -0,02 -0,04 0,01 -0,06 0,10 -0,05 1,00  

Oil 0,26 0,29 0,23 0,19 0,29 0,62 -0,05 -0,12 0,25 0,16 0,14 0,29 0,48 0,05 0,26 1,00 

 

Table A1: Countries 

 

Austria France Italy Portugal 

Belgium Germany Lithuania Slovak Republic 

Czech Republic Greece Luxembourg Slovenia 

Denmark Hungary Netherlands Spain 

Finland Ireland Poland Sweden 
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United Kingdom Croatia Malta  

 

Appendix B: Robustness check invention 
Table B1: Models I-IV, time period 2000-2016. 

Variable Model I Model II Model III Model IV Model V 
 FIT R&D R&D Stock Env. tax Policy index 
      
Cumulative capacity 0.0609** 0.0613*** 0.0568*** 0.0653*** 0.00684 
 (0.0223) (0.0193) (0.0183) (0.0213) (0.0283) 
Human capital -0.715* -0.609** -0.629** -0.743* -0.786* 
 (0.387) (0.280) (0.227) (0.384) (0.405) 
Average wage -1.049 -1.356* -1.594** -1.053 -1.412 
 (0.816) (0.712) (0.664) (0.804) (0.980) 
GDP -0.160 -0.0378 0.253 -0.252 1.090 
 (1.000) (0.816) (0.633) (1.039) (1.134) 
Population 1.480 0.892 0.0199 1.022 4.975*** 
 (1.845) (1.243) (0.728) (2.063) (1.408) 
Interest rate 0.00368 0.00749 0.0162 0.0107 0.0339 
 (0.0176) (0.0139) (0.0117) (0.0152) (0.0224) 
FIT 0.243     
 (0.218)     
Public Solar R&D  0.161***    
  (0.0477)    
Public Solar R&D Stock   0.256***   
   (0.0467)   
Environmental tax    -0.228  
    (0.356)  
Env. Policy Stringency     0.125 
     (0.105) 
Constant 0.215 8.116 17.66* 4.963 -33.65** 
 (16.61) (11.33) (8.741) (18.12) (12.31) 
Observations 371 371 371 371 252 
Fixed Effects YES YES YES YES YES 
Year fixed effects YES YES YES YES YES 
R-squared 0.565 0.585 0.600 0.563 0.698 
Number of country1 23 23 23 23 19 
 

Table B2 Models I-IV, time period 2006-2016. 

 (1) (2) (3) (4) (5) 
VARIABLES FIT R&D R&D Stock Env. tax Policy index 
      
Cumulative capacity 0.0773*** 0.0891*** 0.0812*** 0.0943*** 0.0715* 
 (0.0199) (0.0195) (0.0210) (0.0185) (0.0368) 
Human capital -0.583* -0.553* -0.690*** -0.642* -0.869* 
 (0.298) (0.285) (0.233) (0.311) (0.472) 
Average wage -0.248 -0.270 -0.466 -0.385 1.790 
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 (1.391) (1.443) (1.463) (1.313) (1.173) 
Polysilicon Price 0.208*** 0.259*** 0.271*** 0.195*** 0.232*** 
 (0.0474) (0.0437) (0.0355) (0.0596) (0.0606) 
Brent Oil 0.0528 0.0594 0.0544 0.0570 -0.133 
 (0.0947) (0.101) (0.101) (0.109) (0.159) 
GDP 0.182 0.128 0.117 -0.261 1.367 
 (0.577) (0.596) (0.595) (0.603) (1.128) 
Population 2.596 2.147 1.212 0.776 -1.344 
 (1.733) (1.548) (1.282) (1.660) (3.353) 
Interest rate 0.0260 0.0348* 0.0378** 0.0405* 0.0350 
 (0.0206) (0.0181) (0.0174) (0.0209) (0.0238) 
FIT 0.541**     
 (0.200)     
Public Solar R&D  0.106    
  (0.0687)    
Public Solar R&D Stock   0.246**   
   (0.0878)   
Environmental tax    -0.680  
    (0.443)  
Env. Policy Stringency     0.0608 
     (0.0856) 
Constant -20.06 -16.02 -5.509 0.384 -6.928 
 (14.54) (15.38) (15.41) (18.65) (28.07) 
Observations 246 246 246 246 146 
Fixed Effects YES YES YES YES YES 
R-squared 0.289 0.279 0.298 0.275 0.328 
Number of country1 23 23 23 23 19 

Robust standard errors in parentheses 
*** p<0.01, ** p<0.05, * p<0.1 

 

Appendix C: Robustness check Diffusion 
 

Table C1: Diffusion Models VI - X, Moving average on dependent variable, period 2000-2019.  
 Model VI Model VII Model VIII Model IX Model X 
VARIABLES FIT R&D R&D Stock Env. tax Policy index 
Human capital 3.189** 3.204** 3.029** 3.110** 3.240* 
 (1.235) (1.251) (1.180) (1.149) (1.640) 
Average wage -5.835 -6.241* -6.206* -5.943* 0.751 
 (3.425) (3.207) (3.190) (3.143) (3.397) 
Polysilicon Price -0.746*** -0.616*** -0.629*** -0.653*** -0.532*** 
 (0.189) (0.172) (0.175) (0.183) (0.164) 
Brent Oil 0.308 0.474 0.465 0.549 -0.633 
 (0.502) (0.488) (0.457) (0.476) (0.696) 
GDP 10.62*** 10.88*** 10.75*** 10.88*** 12.67*** 
 (2.419) (2.257) (2.305) (2.386) (2.168) 
Population -0.908 -1.803 -2.834 -2.55 11.82** 
 (7.488) (7.003) (7.124) (0.75) (5.508) 
Interest rate 0.00992 0.0501 0.0630 0.0629 0.368*** 
 (0.110) (0.119) (0.116) (0.119) (0.0891) 
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FIT 2.360**     
 (1.133)     
Public Solar R&D  0.204    
  (0.283)    
Public Solar R&D Stock   0.234   
   (0.297)   
Environmental tax    -0.581  
    (1.543)  
Env. Policy Stringency     0.573 
     (0.374) 
Constant 37.70 47.96 57.56 29.13 -160.1*** 
 (83.26) (78.20) (78.54) (29.20) (47.33) 
Observations 414 414 414 414 254 
Fixed Effects YES YES YES YES YES 
R-squared 0.762 0.752 0.752 0.750 0.805 
Number of country1 23 23 23 23 19 

Robust standard errors in parentheses 
*** p<0.01, ** p<0.05, * p<0.1 

 
Table C2: Models VI - X, period 2008-2019. 

 Model VI Model VII Model VIII Model IX Model X 
VARIABLES FIT R&D R&D Stock Env. tax Policy index 
Human capital -0.281 -0.366 -0.716 -1.166 -1.085 
 (1.362) (1.431) (1.319) (1.472) (1.609) 
Average wage 1.671 2.297 2.469 3.296 -9.910* 
 (6.703) (6.821) (6.908) (7.068) (5.329) 
Polysilicon Price -0.886*** -0.724*** -0.680*** -0.518*** -0.699*** 
 (0.150) (0.148) (0.149) (0.156) (0.199) 
Brent Oil -0.0748 0.0579 0.0568 0.503* -0.202 
 (0.315) (0.339) (0.336) (0.280) (0.529) 
GDP 8.534*** 9.080*** 8.600*** 9.975*** 8.660 
 (2.115) (1.996) (1.718) (2.344) (6.117) 
Population -19.82*** -22.41*** -23.87*** -2.59 -6.277 
 (4.938) (4.426) (5.640) (0.77) (19.43) 
Interest rate -0.0254 0.0220 0.0203 -0.0283 0.0569 
 (0.0970) (0.0926) (0.0891) (0.0964) (0.0852) 
FIT 2.280**     
 (0.880)     
Public Solar R&D  0.235    
  (0.275)    
Public Solar R&D Stock   0.635   
   (0.418)   
Environmental tax    3.773*  
    (1.915)  
Env. Policy Stringency     0.805*** 
     (0.249) 
Constant 149.7* 163.8* 176.2* -59.53 151.3 
 (81.10) (88.20) (93.98) (74.72) (184.9) 
Observations 230 230 230 230 110 
Fixed Effects YES YES YES YES YES 
R-squared 0.607 0.585 0.593 0.554 0.609 
Number of country1 23 23 23 23 19 

Robust standard errors in parentheses 
*** p<0.01, ** p<0.05, * p<0.1 

 

Table C3: Diffusion Models VI - X, With year Fixed effects, period 2000-2019.  
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 Model VI Model VII Model VIII Model IX Model X 
VARIABLES FIT R&D R&D Stock Env. tax Policy index 
Human capital 2.590* 2.648* 2.554* 2.596* 3.838** 
 (1.381) (1.495) (1.457) (1.485) (1.724) 
Average wage -5.407 -6.311* -6.387* -5.923 -0.527 
 (4.137) (3.650) (3.486) (3.767) (3.386) 
GDP 9.064* 9.730** 9.905** 10.39** 15.75*** 
 (5.033) (4.660) (4.521) (4.934) (4.056) 
Population -3.960 -4.821 -6.238 -2.59 17.18** 
 (8.268) (7.630) (7.160) (0.77) (7.945) 
Interest rate -0.0643 -0.0330 -0.0196 -0.0180 0.323*** 
 (0.132) (0.150) (0.150) (0.143) (0.0780) 
FIT 2.415*     
 (1.269)     
Public Solar R&D  0.198    
  (0.316)    
Public Solar R&D Stock   0.348   
   (0.354)   
Environmental tax    -0.123  
    (1.610)  
Env. Policy Stringency     1.002* 
     (0.538) 
Constant 66.39 81.16 94.32 31.39 -212.3** 
 (92.30) (86.59) (81.85) (29.35) (74.20) 
Observations 414 414 414 414 254 
Fixed Effects YES YES YES YES YES 
Year fixed effects YES YES YES YES YES 
R-squared 0.758 0.748 0.750 0.745 0.819 
Number of country1 23 23 23 23 19 

Robust standard errors in parentheses 
*** p<0.01, ** p<0.05, * p<0.1 
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